A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena. The dataset contains more than 800,000 records stored as plaintext CSV files. Each record contains 200 columns and is approximately 1.5 MB in size. Most queries will span 5 to 10 columns only. How should the Machine Learning Specialist transform the dataset to minimize query runtime? A. Convert the records to Apache Parquet format. B. Convert the records to JSON format. C. Convert the records to GZIP CSV format. D. Convert the records to XML format.  Suggested Answer: A Community Answer: A Using compressions will reduce the amount of data scanned by Amazon Athena, and also reduce your S3 bucket storage. It's a Win-Win for your AWS bill. Supported formats: GZIP, LZO, SNAPPY (Parquet) and ZLIB. Reference: https://www.cloudforecast.io/blog/using-parquet-on-athena-to-save-money-on-aws/ This question is in MLS-C01 AWS Certified Machine Learning – Specialty Exam For getting AWS Certified Machine Learning – Specialty Certificate Disclaimers: The website is not related to, affiliated with, endorsed or authorized by Amazon. Trademarks, certification & product names are used for reference only and belong to Amazon. The website does not contain actual questions and answers from Amazon's Certification Exam.
Please login or Register to submit your answer