A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95. Which model describes the underlying data in this situation?

QuestionsCategory: MLS-C01A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95. Which model describes the underlying data in this situation?
Admin Staff asked 6 months ago
A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95.
Which model describes the underlying data in this situation?

A. A naive Bayesian model, since the features are all conditionally independent.

B. A full Bayesian network, since the features are all conditionally independent.

C. A naive Bayesian model, since some of the features are statistically dependent.

D. A full Bayesian network, since some of the features are statistically dependent.








 

Suggested Answer: C

Community Answer: D




This question is in MLS-C01 AWS Certified Machine Learning – Specialty Exam
For getting AWS Certified Machine Learning – Specialty Certificate


Disclaimers:
The website is not related to, affiliated with, endorsed or authorized by Amazon.
Trademarks, certification & product names are used for reference only and belong to Amazon.
The website does not contain actual questions and answers from Amazon's Certification Exam.
Question Tags:

Next Post

Recommended

Welcome Back!

Login to your account below

Create New Account!

Fill the forms below to register

Retrieve your password

Please enter your username or email address to reset your password.