A company is building a predictive maintenance model based on machine learning (ML). The data is stored in a fully private Amazon S3 bucket that is encrypted at rest with AWS Key Management Service (AWS KMS) CMKs. An ML specialist must run data preprocessing by using an Amazon SageMaker Processing job that is triggered from code in an Amazon SageMaker notebook. The job should read data from Amazon S3, process…

QuestionsCategory: MLS-C01A company is building a predictive maintenance model based on machine learning (ML). The data is stored in a fully private Amazon S3 bucket that is encrypted at rest with AWS Key Management Service (AWS KMS) CMKs. An ML specialist must run data preprocessing by using an Amazon SageMaker Processing job that is triggered from code in an Amazon SageMaker notebook. The job should read data from Amazon S3, process…
Admin Staff asked 3 months ago
A company is building a predictive maintenance model based on machine learning (ML). The data is stored in a fully private Amazon S3 bucket that is encrypted at rest with AWS Key Management Service (AWS KMS) CMKs. An ML specialist must run data preprocessing by using an Amazon SageMaker Processing job that is triggered from code in an Amazon SageMaker notebook. The job should read data from Amazon S3, process it, and upload it back to the same S3 bucket.
The preprocessing code is stored in a container image in Amazon Elastic Container Registry (Amazon ECR). The ML specialist needs to grant permissions to ensure a smooth data preprocessing workflow.
Which set of actions should the ML specialist take to meet these requirements?

A. Create an IAM role that has permissions to create Amazon SageMaker Processing jobs, S3 read and write access to the relevant S3 bucket, and appropriate KMS and ECR permissions. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job from the notebook.

B. Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job with an IAM role that has read and write permissions to the relevant S3 bucket, and appropriate KMS and ECR permissions.

C. Create an IAM role that has permissions to create Amazon SageMaker Processing jobs and to access Amazon ECR.    Attach the role     to the SageMaker notebook instance. Set up both an S3 endpoint and a KMS endpoint in the default VPC. Create Amazon SageMaker Processing jobs from the notebook.

D. Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Set up an S3 endpoint in the default VPC. Create Amazon SageMaker Processing jobs with the access key and secret key of the IAM user with appropriate KMS and ECR permissions.








 

Suggested Answer: D

Community Answer: B




This question is in MLS-C01 AWS Certified Machine Learning – Specialty Exam
For getting AWS Certified Machine Learning – Specialty Certificate


Disclaimers:
The website is not related to, affiliated with, endorsed or authorized by Amazon.
Trademarks, certification & product names are used for reference only and belong to Amazon.
The website does not contain actual questions and answers from Amazon's Certification Exam.
Question Tags:

Recommended

Welcome Back!

Login to your account below

Create New Account!

Fill the forms below to register

Retrieve your password

Please enter your username or email address to reset your password.