A data science team is planning to build a natural language processing (NLP) application. The application's text preprocessing stage will include part-of-speech tagging and key phase extraction. The preprocessed text will be input to a custom classification algorithm that the data science team has already written and trained using Apache MXNet. Which solution can the team build MOST quickly to meet these requirements? A. Use Amazon Comprehend for the part-of-speech tagging, key phase extraction, and classification tasks. B. Use an NLP library in Amazon SageMaker for the part-of-speech tagging. Use Amazon Comprehend for the key phase extraction. Use AWS Deep Learning Containers with Amazon SageMaker to build the custom classifier. C. Use Amazon Comprehend for the part-of-speech tagging and key phase extraction tasks. Use Amazon SageMaker built-in Latent Dirichlet Allocation (LDA) algorithm to build the custom classifier. D. Use Amazon Comprehend for the part-of-speech tagging and key phase extraction tasks. Use AWS Deep Learning Containers with Amazon SageMaker to build the custom classifier.  Suggested Answer: B Community Answer: D This question is in MLS-C01 AWS Certified Machine Learning – Specialty Exam For getting AWS Certified Machine Learning – Specialty Certificate Disclaimers: The website is not related to, affiliated with, endorsed or authorized by Amazon. Trademarks, certification & product names are used for reference only and belong to Amazon. The website does not contain actual questions and answers from Amazon's Certification Exam.
Please login or Register to submit your answer