A financial company is trying to detect credit card fraud. The company observed that, on average, 2% of credit card transactions were fraudulent. A data scientist trained a classifier on a year's worth of credit card transactions data. The model needs to identify the fraudulent transactions (positives) from the regular ones (negatives). The company's goal is to accurately capture as many positives as possible. Which metrics should the data scientist use to optimize the model? (Choose two.) A. Specificity B. False positive rate C. Accuracy D. Area under the precision-recall curve E. True positive rate  Suggested Answer: AB Community Answer: DE This question is in MLS-C01 AWS Certified Machine Learning – Specialty Exam For getting AWS Certified Machine Learning – Specialty Certificate Disclaimers: The website is not related to, affiliated with, endorsed or authorized by Amazon. Trademarks, certification & product names are used for reference only and belong to Amazon. The website does not contain actual questions and answers from Amazon's Certification Exam.
Please login or Register to submit your answer