A Machine Learning Specialist is required to build a supervised image-recognition model to identify a cat. The ML Specialist performs some tests and records the following results for a neural network-based image classifier: Total number of images available = 1,000 Test set images = 100 (constant test set) The ML Specialist notices that, in over 75% of the misclassified images, the cats were held upside down by their owners. Which techniques can be used by the ML Specialist to improve this specific test error? A. Increase the training data by adding variation in rotation for training images. B. Increase the number of epochs for model training C. Increase the number of layers for the neural network. D. Increase the dropout rate for the second-to-last layer.  Suggested Answer: B Community Answer: A This question is in MLS-C01 AWS Certified Machine Learning – Specialty Exam For getting AWS Certified Machine Learning – Specialty Certificate Disclaimers: The website is not related to, affiliated with, endorsed or authorized by Amazon. Trademarks, certification & product names are used for reference only and belong to Amazon. The website does not contain actual questions and answers from Amazon's Certification Exam.
Please login or Register to submit your answer