A retail company wants to build a recommendation system for the company's website. The system needs to provide recommendations for existing users and needs to base those recommendations on each user's past browsing history. The system also must filter out any items that the user previously purchased. Which solution will meet these requirements with the LEAST development effort?

QuestionsCategory: MLS-C01A retail company wants to build a recommendation system for the company's website. The system needs to provide recommendations for existing users and needs to base those recommendations on each user's past browsing history. The system also must filter out any items that the user previously purchased. Which solution will meet these requirements with the LEAST development effort?
Admin Staff asked 7 months ago
A retail company wants to build a recommendation system for the company's website. The system needs to provide recommendations for existing users and needs to base those recommendations on each user's past browsing history. The system also must filter out any items that the user previously purchased.
Which solution will meet these requirements with the LEAST development effort?

A. Train a model by using a user-based collaborative filtering algorithm on Amazon SageMaker. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.

B. Use an Amazon Personalize PERSONALIZED_RANKING recipe to train a model. Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetPersonalizedRanking API operation to get the real-time recommendations.

C. Use an Amazon Personalize USER_PERSONALIZATION recipe to train a model. Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetRecommendations API operation to get the real-time recommendations.

D. Train a neural collaborative filtering model on Amazon SageMaker by using GPU instances. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.








 

Suggested Answer: C

Community Answer: C




This question is in MLS-C01 AWS Certified Machine Learning – Specialty Exam
For getting AWS Certified Machine Learning – Specialty Certificate


Disclaimers:
The website is not related to, affiliated with, endorsed or authorized by Amazon.
Trademarks, certification & product names are used for reference only and belong to Amazon.
The website does not contain actual questions and answers from Amazon's Certification Exam.
Question Tags:

Next Post

Recommended

Welcome Back!

Login to your account below

Create New Account!

Fill the forms below to register

Retrieve your password

Please enter your username or email address to reset your password.