Company Overview - Dress4Win is a web-based company that helps their users organize and manage their personal wardrobe using a web app and mobile application. The company also cultivates an active social network that connects their users with designers and retailers. They monetize their services through advertising, e-commerce, referrals, and a freemium app model. The application has grown from a few servers in the founder's garage to several hundred servers and appliances in a colocated data center. However, the capacity of their infrastructure is now insufficient for the application's rapid growth. Because of this growth and the company's desire to innovate faster, Dress4Win is committing to a full migration to a public cloud. Solution Concept - For the first phase of their migration to the cloud, Dress4Win is moving their development and test environments. They are also building a disaster recovery site, because their current infrastructure is at a single location. They are not sure which components of their architecture they can migrate as is and which components they need to change before migrating them. Existing Technical Environment - The Dress4Win application is served out of a single data center location. All servers run Ubuntu LTS v16.04. Databases: MySQL. 1 server for user data, inventory, static data: - MySQL 5.8 - 8 core CPUs - 128 GB of RAM - 2x 5 TB HDD (RAID 1) Redis 3 server cluster for metadata, social graph, caching. Each server is: - Redis 3.2 - 4 core CPUs - 32GB of RAM Compute: 40 Web Application servers providing micro-services based APIs and static content. `" - Tomcat Java - - Nginx - 4 core CPUs - 32 GB of RAM 20 Apache Hadoop/Spark servers: - Data analysis - Real-time trending calculations - 8 core CPUs - 128 GB of RAM - 4x 5 TB HDD (RAID 1) 3 RabbitMQ servers for messaging, social notifications, and events: - 8 core CPUs - 32GB of RAM Miscellaneous servers: - Jenkins, monitoring, bastion hosts, security scanners - 8 core CPUs - 32GB of RAM Storage appliances: iSCSI for VM hosts Fiber channel SAN `" MySQL databases - 1 PB total storage; 400 TB available NAS `" image storage, logs, backups - 100 TB total storage; 35 TB available Business Requirements - Build a reliable and reproducible environment with scaled parity of production. Improve security by defining and adhering to a set of security and Identity and Access Management (IAM) best practices for cloud. Improve business agility and speed of innovation through rapid provisioning of new resources. Analyze and optimize architecture for performance in the cloud. Technical Requirements - Easily create non-production environments in the cloud. Implement an automation framework for provisioning resources in cloud. Implement a continuous deployment process for deploying applications to the on-premises datacenter or cloud. Support failover of the production environment to cloud during an emergency. Encrypt data on the wire and at rest. Support multiple private connections between the production data center and cloud environment. Executive Statement - Our investors are concerned about our ability to scale and contain costs with our current infrastructure. They are also concerned that a competitor could use a public cloud platform to offset their up-front investment and free them to focus on developing better features. Our traffic patterns are highest in the mornings and weekend evenings; during other times, 80% of our capacity is sitting idle. Our capital expenditure is now exceeding our quarterly projections. Migrating to the cloud will likely cause an initial increase in spending, but we expect to fully transition before our next hardware refresh cycle. Our total cost of ownership (TCO) analysis over the next 5 years for a public cloud strategy achieves a cost reduction between 30% and 50% over our current model. For this question, refer to the Dress4Win case study. You want to ensure that your on-premises architecture meets business requirements before you migrate your solution. What change in the on-premises architecture should you make? A. Replace RabbitMQ with Google Pub/Sub. B. Downgrade MySQL to v5.7, which is supported by Cloud SQL for MySQL. C. Resize compute resources to match predefined Compute Engine machine types. D. Containerize the micro-services and host them in Google Kubernetes Engine. Suggested Answer: C This question is in Google Professional Cloud Architect Exam For getting Google Professional Cloud Architect Certificate Disclaimers: The website is not related to, affiliated with, endorsed or authorized by Google. Trademarks, certification & product names are used for reference only and belong to Google.
Please login or Register to submit your answer