DRAG DROP – Match the machine learning tasks to the appropriate scenarios. To answer, drag the appropriate task from the column on the left to its scenario on the right. Each task may be used once, more than once, or not at all. NOTE: Each correct selection is worth one point. Select and Place:

QuestionsCategory: AI-900DRAG DROP – Match the machine learning tasks to the appropriate scenarios. To answer, drag the appropriate task from the column on the left to its scenario on the right. Each task may be used once, more than once, or not at all. NOTE: Each correct selection is worth one point. Select and Place:
Admin Staff asked 7 months ago
DRAG DROP -
Match the machine learning tasks to the appropriate scenarios.
To answer, drag the appropriate task from the column on the left to its scenario on the right. Each task may be used once, more than once, or not at all.
NOTE: Each correct selection is worth one point.
Select and Place:
 Image
















 

Suggested Answer: 
    Correct Answer Image

Box 1: Model evaluation -
The Model evaluation module outputs a confusion matrix showing the number of true positives, false negatives, false positives, and true negatives, as well as
ROC, Precision/Recall, and Lift curves.
Box 2: Feature engineering -
Feature engineering is the process of using domain knowledge of the data to create features that help ML algorithms learn better. In Azure Machine Learning, scaling and normalization techniques are applied to facilitate feature engineering. Collectively, these techniques and feature engineering are referred to as featurization.
Note: Often, features are created from raw data through a process of feature engineering. For example, a time stamp in itself might not be useful for modeling until the information is transformed into units of days, months, or categories that are relevant to the problem, such as holiday versus working day.
Box 3: Feature selection -
In machine learning and statistics, feature selection is the process of selecting a subset of relevant, useful features to use in building an analytical model. Feature selection helps narrow the field of data to the most valuable inputs. Narrowing the field of data helps reduce noise and improve training performance.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio/evaluate-model-performance
 https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml

This question is in AI-900 Microsoft Azure AI Fundamentals Exam
For getting Microsoft Certified: Azure AI Fundamentals Certificate





Disclaimers:
The website is not related to, affiliated with, endorsed or authorized by Microsoft. 
The website does not contain actual questions and answers from Microsoft's Certification Exams.
Trademarks, certification & product names are used for reference only and belong to Microsoft.

Next Post

Recommended

Welcome Back!

Login to your account below

Create New Account!

Fill the forms below to register

Retrieve your password

Please enter your username or email address to reset your password.