DRAG DROP – You are creating an experiment by using Azure Machine Learning Studio. You must divide the data into four subsets for evaluation. There is a high degree of missing values in the data. You must prepare the data for analysis. You need to select appropriate methods for producing the experiment. Which three modules should you run in sequence? To answer, move the appropriate actions from the list of…

QuestionsCategory: DP-100DRAG DROP – You are creating an experiment by using Azure Machine Learning Studio. You must divide the data into four subsets for evaluation. There is a high degree of missing values in the data. You must prepare the data for analysis. You need to select appropriate methods for producing the experiment. Which three modules should you run in sequence? To answer, move the appropriate actions from the list of…
Admin Staff asked 7 months ago
DRAG DROP -
You are creating an experiment by using Azure Machine Learning Studio.
You must divide the data into four subsets for evaluation. There is a high degree of missing values in the data. You must prepare the data for analysis.
You need to select appropriate methods for producing the experiment.
Which three modules should you run in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.
NOTE: More than one order of answer choices is correct. You will receive credit for any of the correct orders you select.
Select and Place:
 Image
















 

Suggested Answer: 
    Correct Answer Image

The Clean Missing Data module in Azure Machine Learning Studio, to remove, replace, or infer missing values.
Incorrect Answers:
✑ Latent Direchlet Transformation: Latent Dirichlet Allocation module in Azure Machine Learning Studio, to group otherwise unclassified text into a number of categories. Latent Dirichlet Allocation (LDA) is often used in natural language processing (NLP) to find texts that are similar. Another common term is topic modeling.
✑ Build Counting Transform: Build Counting Transform module in Azure Machine Learning Studio, to analyze training data. From this data, the module builds a count table as well as a set of count-based features that can be used in a predictive model.
Missing Value Scrubber: The Missing Values Scrubber module is deprecated.
 Reference Image
✑ Feature hashing: Feature hashing is used for linguistics, and works by converting unique tokens into integers.
✑ Replace discrete values: the Replace Discrete Values module in Azure Machine Learning Studio is used to generate a probability score that can be used to represent a discrete value. This score can be useful for understanding the information value of the discrete values.
Reference: alt="Reference Image" />
✑ Feature hashing: Feature hashing is used for linguistics, and works by converting unique tokens into integers.
✑ Replace discrete values: the Replace Discrete Values module in Azure Machine Learning Studio is used to generate a probability score that can be used to represent a discrete value. This score can be useful for understanding the information value of the discrete values.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean-missing-data

This question is in DP-100 Exam
For getting Microsoft Azure Data Scientist Associate Certificate


Disclaimers:
The website is not related to, affiliated with, endorsed or authorized by Microsoft. 
The website does not contain actual questions and answers from Microsoft's Certification Exams.
Trademarks, certification & product names are used for reference only and belong to Microsoft.

Next Post

Recommended

Welcome Back!

Login to your account below

Create New Account!

Fill the forms below to register

Retrieve your password

Please enter your username or email address to reset your password.