HOTSPOT - For each of the following statements, select Yes if the statement is true. Otherwise, select No. NOTE: Each correct selection is worth one point. Hot Area: Suggested Answer: Box 1: Yes - In machine learning, if you have labeled data, that means your data is marked up, or annotated, to show the target, which is the answer you want your machine learning model to predict. In general, data labeling can refer to tasks that include data tagging, annotation, classification, moderation, transcription, or processing. Box 2: No - Box 3: No - Accuracy is simply the proportion of correctly classified instances. It is usually the first metric you look at when evaluating a classifier. However, when the test data is unbalanced (where most of the instances belong to one of the classes), or you are more interested in the performance on either one of the classes, accuracy doesn't really capture the effectiveness of a classifier. Reference: https://www.cloudfactory.com/data-labeling-guide https://docs.microsoft.com/en-us/azure/machine-learning/studio/evaluate-model-performance This question is in AI-900 Microsoft Azure AI Fundamentals Exam For getting Microsoft Certified: Azure AI Fundamentals Certificate Disclaimers: The website is not related to, affiliated with, endorsed or authorized by Microsoft. The website does not contain actual questions and answers from Microsoft's Certification Exams. Trademarks, certification & product names are used for reference only and belong to Microsoft.
Please login or Register to submit your answer