You have a Python script named train.py in a local folder named scripts. The script trains a regression model by using scikit-learn. The script includes code to load a training data file which is also located in the scripts folder. You must run the script as an Azure ML experiment on a compute cluster named aml-compute. You need to configure the run to ensure that the environment includes the required packages for model training. You have instantiated a variable named aml- compute that references the target compute cluster.

QuestionsCategory: DP-100You have a Python script named train.py in a local folder named scripts. The script trains a regression model by using scikit-learn. The script includes code to load a training data file which is also located in the scripts folder. You must run the script as an Azure ML experiment on a compute cluster named aml-compute. You need to configure the run to ensure that the environment includes the required packages for model training. You have instantiated a variable named aml- compute that references the target compute cluster.
Admin Staff asked 4 months ago
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You have a Python script named train.py in a local folder named scripts. The script trains a regression model by using scikit-learn. The script includes code to load a training data file which is also located in the scripts folder.
You must run the script as an Azure ML experiment on a compute cluster named aml-compute.
You need to configure the run to ensure that the environment includes the required packages for model training. You have instantiated a variable named aml- compute that references the target compute cluster.
Solution: Run the following code:
 Image
Does the solution meet the goal?

A. Yes

B. No












 

Suggested Answer: B

There is a missing line: conda_packages=['scikit-learn'], which is needed.
Correct example:
sk_est = Estimator(source_directory='./my-sklearn-proj',
script_params=script_params,
compute_target=compute_target,
entry_script='train.py',
conda_packages=['scikit-learn'])
Note:
The Estimator class represents a generic estimator to train data using any supplied framework.
This class is designed for use with machine learning frameworks that do not already have an Azure Machine Learning pre-configured estimator. Pre-configured estimators exist for Chainer, PyTorch, TensorFlow, and SKLearn.
Example:
from azureml.train.estimator import Estimator
script_params = {
# to mount files referenced by mnist dataset
'--data-folder': ds.as_named_input('mnist').as_mount(),
'--regularization': 0.8
}
Reference:
https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.estimator.estimator

This question is in DP-100 Exam
For getting Microsoft Azure Data Scientist Associate Certificate


Disclaimers:
The website is not related to, affiliated with, endorsed or authorized by Microsoft. 
The website does not contain actual questions and answers from Microsoft's Certification Exams.
Trademarks, certification & product names are used for reference only and belong to Microsoft.

Recommended

Welcome Back!

Login to your account below

Create New Account!

Fill the forms below to register

Retrieve your password

Please enter your username or email address to reset your password.